

Quantify Image Quality Using Neural Image Assessment

신경 이미지 평가를 활용한 이미지 품질 정량화

오영우

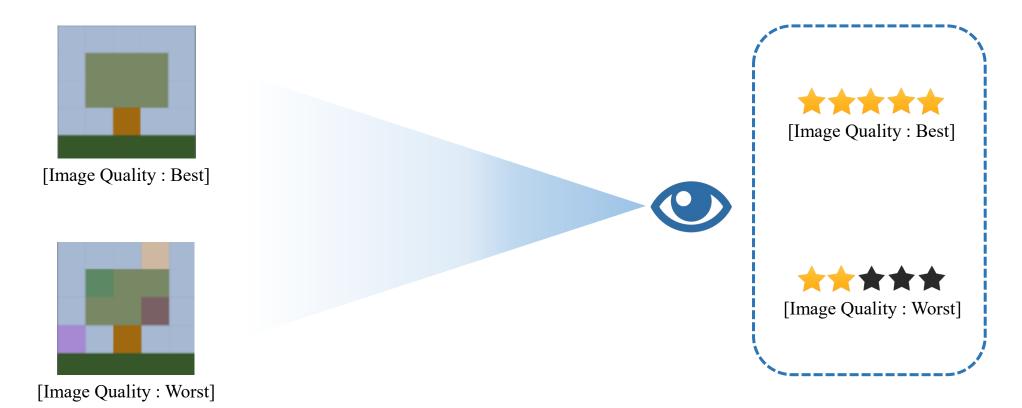
조선대학교컴퓨터공학과석사과정

CONTENTS

- O1 프로젝트 목표
 Goal of project
- O2 데이터 로드 및 평가
 Data loading and evaluation
- **데이터 전처리 과정**Preprocess augment data
- 다음 발표 내용
 Next presentation

1 - 1 프로젝트 목표 이미지 품질 평가

01 인간은 '시각'을 통해, 사물, 이미지, 영상 등에 대한 객체의 품질 평가를 수행할 수 있으나, 이는 주관적인 평가에 그치는 한계



https://towardsdatascience.com/deep-image-quality-assessment-30ad71641fac

- 인간은 시각을 통해, 동일한 이미지, 영상, 물체 등에 대한 품질 평가를 수행할 수 있음
- 그러나 시각을 통해 평가되는 이미지 품질은 다소 주관적인 경향을 가질 수 있음

F

1 - 2 프로젝트 목표 이미지 품질 평가 기법

- 01 객관적인 품질 평가를 위해 다양한 기법들이 활용되고 있으며, 가장 대표적인 PSNR (Peak-Signal-to-Noise-Ratio) 기법이 존재
- 02 MSE (Mean Square, Error)를 활용하여, 영상 화질에 대한 손실 정보를 평가하는 방식
- 03 이미지 압축률이 클수록 PSNR 값이 감소함과 동시에 이미지 왜곡 현상이 증가됨을 확인

[Original image]

[PSNR, 34.8227 dB]

[PSNR, 30.9394 dB]

[PSNR, 25.8699 dB]

https://bskvvision.com/entry/IOA-%EC%B5%9C%EB%8C%80%EC%8B%A0%ED%98%B8%EB%8C%80%EC%9E%A1%EC%9D%8C%EB%B9%84PSNR%EC%9D%80-%EC%9D%B4%EB%AF%B8%EC%A7%80-%ED%92%88%EC%A7%88

- 이미지 품질 평가를 위해 사용되는 가장 대표적인 메트릭은 PSNR 기법은 이미지에 대한 객관적인 품질 평가를 가능케 함
- 그러나, 해당 기법은 인간 느끼는 주관적인 평가와 상반되는 경우가 빈번히 발생

1-3 ENR 기법의 문제점

01 객관적 평가와 주관적 평가가 상반되는 결론이 도출되므로, 보다 정량적인 평가 기법이 요구

[PSNR, 25.27 dB]

[PSNR, 25.17 dB]

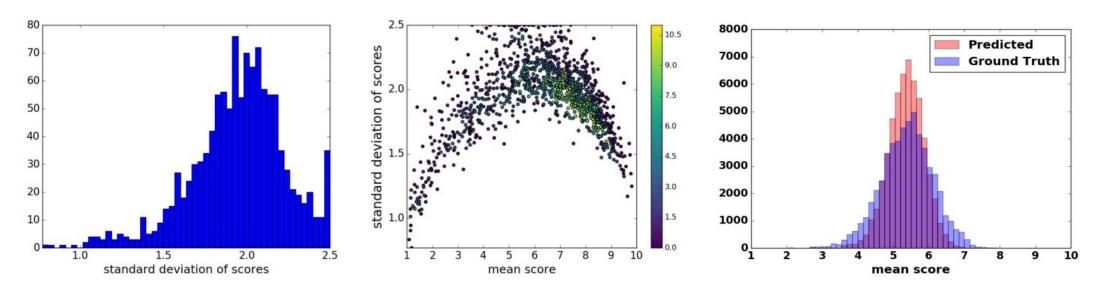
https://towardsdatascience.com/deep-image-quality-assessment-30ad71641fac

- PSNR 기법을 통해 평가된 경우, 좌측의 이미지가 높은 품질을 지녔으나, 인간이 느끼기에 화질이 크게 저하되었다고 느낌
- 우측 이미지의 경우, 좌측에 비해 높은 화질로 느껴지나, 실제 PSNR 기법으로 평가하는 경우 더 낮은 품질을 기록

F

1 - 4 ^{프로젝트 목표} NIMA & CNN 기반 품질 평가 기법

- 01 PSNR과 같은 기존 평가 기법은 인간의 주관적인 평가와의 상관성이 부족하며, 낮은 정확도
- 02 딥러닝 기반의 품질 예측 기법은 높은 정확도를 보일 수 있으나, 저/고품질과 같은 이진 분류에 의해 주관적 평가와의 상관성이 부족
- NIMA-CNN 기법은 정량적인 품질 평가를 위해, 주어진 이미지에 대해 1~10점의 척도로 평점 분포를 활용하며, 분포를 예측하는 것이 목표 * Each example in the dataset consists of an image and its ground truth (user) ratings.



[1] Talebi, Hossein, and Peyman Milanfar. "NIMA: Neural Image Assessment." IEEE Transactions on Image Processing 27, no. 8 (August 2018): 3998–4011. https://doi.org/10.1109/TIP.2018.2831899. https://developers-kr.googleblog.com/2018/01/introducing-nima-neural-image-assessment.html

- PSNR, 딥러닝 (CNN) 기반의 품질 평가 방안의 경우, 인간이 체감하는 주관적 평가와 상관성이 부족
- NIMA-CNN 기법은 1~10점 사이의 인간의 주관적 평가로 구성된 평점 분포를 활용하여, 궁극적으로 분포를 예측하는 것을 목표로 함

2-1 데이터 로드 및 평가 훈련된 NIMA-CNN 기반 품질 평가 1

```
dataDir = fullfile(tempdir, "LIVEInTheWild");
Set 'dataDir' for the dataset
                                        if ~exist(dataDir, "dir")
                                            mkdir(dataDir);
Download a pretrained NIMA
                                       trainedNet url = "https://ssd.mathworks.com/supportfiles/image/data/trainedNIMA.zip";
                                       downloadTrainedNetwork(trainedNet url,dataDir);
                                       load(fullfile(dataDir, "trainedNIMA.mat"));
  Apply the Gaussian blur
                                       imOriginal = imread("kobi.png");
                                       imBlur = imgaussfilt(imOriginal,5);
                                       montage({imOriginal,imBlur})
```


- NIMA 모델에 대한 평가를 위해 (3)과 같이 블러 처리를 통해, 정상적인 이미지의 품질 저하를 수행
- 사전 학습된 NIMA 모델을 이용하여, 정상 이미지와 블러 처리된 이미지에 대한 평가 결과를 진행

데이터 로드 및 평가 2-2 네이터 도드 및 평가 한 분절 평가 2 분련된 NIMA-CNN 기반 품질 평가 2

Predict the NIMA quality score [meanOriginal, stdOriginal] = predictNIMAScore(dlnet, imOriginal); [meanBlur,stdBlur] = predictNIMAScore(dlnet,imBlur); figure Display the images and scores t = tiledlayout(1,2); displayImageAndScoresForNIMA(t,imOriginal,meanOriginal,stdOriginal,"Original Image") displayImageAndScoresForNIMA(t,imBlur,meanBlur,stdBlur,"Blurred Image")

[Original image]

- Mean score: 7.7314
- Std Dev: 1.5516

[Blurred image]

- Mean score : 6.2639
- Std Dev: 1.7147

- predictNIMAScore 함수를 통해 측정된 평균 점수는 이미지의 품질을 나타내며, 점수의 표준 편차는 예측된 평균 점수의 신뢰 수준을 의미
- 학습된 NIMA-CNN을 통해 예측된 결과는 주관적인 시각적 평가와 일치하는 이미지 품질을 예측할 수 있음을 보임

2-3 데이터로드및평가 데이터셋로드 1

- ₫ 챌린지 데이터베이스인 'LIVE in the Wild Image Quality Challenge Database'를 활용한 데이터 셋 설치
- 1162장의 이미지와 각 이미지는 [1, 100] 기준에 대해 175명에 의해 주관적 점수를 포함
- 03 LIVE 데이터셋은 각 이미지에 대한 주관적 점수의 평균 및 표준 편차를 제공

```
Load LIVE in the Wild data (images)

imageData = load(fullfile(dataDir, "Data", "AllImages_release.mat"));
imageData = imageData.AllImages_release;
nImg = length(imageData);
imageList(1:7) = fullfile(dataDir, "Images", "trainingImages", imageData(1:7));
imageList(8:nImg) = fullfile(dataDir, "Images", imageData(8:end));

meanData = load(fullfile(dataDir, "Data", "AllMOS_release.mat"));
meanData = meanData.AllMOS_release;
stdData = load(fullfile(dataDir, "Data", "AllStdDev_release.mat"));
stdData = stdData.AllStdDev_release;
```

https://live.ece.utexas.edu/research/ChallengeDB/index.html

- 본 예제에서는 LIVE in the Wild Image Quality Challenge Database를 활용
- 사용되는 학습 데이터셋은 각각의 이미지 데이터와 인간이 직접 이미지의 품질을 확인하여 평가한 주관적 점수로 구성

2-4 데이터로드및 평가 데이터셋 로드 2

06

Display a few sample images

```
figure
t = tiledlayout(1,3);
idx1 = 785;
displayImageAndScoresForNIMA(t,readimage(imds,idx1), ...
    meanData(idx1),stdData(idx1),"Image "+imageData(idx1))

idx2 = 203;
displayImageAndScoresForNIMA(t,readimage(imds,idx2), ...
    meanData(idx2),stdData(idx2),"Image "+imageData(idx2))
idx3 = 777;
displayImageAndScoresForNIMA(t,readimage(imds,idx3), ...
    meanData(idx3),stdData(idx3),"Image "+imageData(idx3))
```

Mean score: 92.4 Std Dev: 12.0

Mean score: 28.1 Std Dev: 16.6

Mean score: 12.7 Std Dev: 13.7

3-1 데이터 전처리 과정이미지와 주관적 점수 결합

```
Images resizing to 256 by 256
                                          rescaleSize = [256 256];
                                          imds = transform(imds,@(x)imresize(x,rescaleSize));
  Rescales the scores to [1, 10]
                                          newMaxScore = 10;
                                          prob = createNIMAScoreDistribution(meanData, stdData);
                                          cumProb = cumsum(prob, 2);
Create and combine the datastores
                                          probDS = arrayDatastore(cumProb',IterationDimension=2);
                                          dsCombined = combine(imds,probDS);
                                          sampleRead = preview(dsCombined)
      sampleRead = 1 \times 2 cell
                                                                            2
                  256×256×3 uint8
                                                   [0.0028;0.0134;0.0452;0.1187;0.2517;0.4391;0.6450;0.8212;0.9388;1]
```


- 데이터셋에 존재하는 이미지의 크기를 256 X 256으로 모두 처리하고, [1, 100] 사이의 주관적 품질 점수를 [1, 10] 사이로 스케일링을 취함
- 처리된 이미지와 주관적 품질 점수를 결합하여 NIMA-CNN 학습을 위한 학습 데이터로 활용

3-2 데이터 전처리 과정 데이터 분할 작업

```
numTrain = floor(0.70 * nImg);
Split dataset for training
                                    numVal = floor(0.15 * nImg);
                                    Idx = randperm(nImg);
                                    idxTrain = Idx(1:numTrain);
                                   idxVal = Idx(numTrain+1:numTrain+numVal);
                                    idxTest = Idx(numTrain+numVal+1:nImg);
                                    dsTrain = subset(dsCombined,idxTrain);
                                     dsVal = subset(dsCombined,idxVal);
                                     dsTest = subset(dsCombined,idxTest);
                                    inputSize = [224 224];
Augment the training data
                                    dsTrain = transform(dsTrain,@(x)augmentDataForNIMA(x,inputSize));
```

[1] Talebi, Hossein, and Peyman Milanfar. "NIMA: Neural Image Assessment." IEEE Transactions on Image Processing 27, no. 8 (August 2018): 3998-4011. https://doi.org/10.1109/TIP.2018.2831899

- 학습, 검증, 테스트 단계에 사용되는 데이터 분할 비율은 75: 15: 15 비율로 구성됨
- 학습 성능 개선과 Overfitting 문제를 줄이기 위해 이미지 크기를 줄이고, 50%의 확률로 인위적인 이미지 회전을 취함

4-1 ^{다음 발표 내용} 학습 및 성능 분석

- 예제에서 사용한 MobileNet의 경우, VGG16, Inception-v2 대비 성능이 저조한 것을 확인할 수 있음
- 02 따라서, 기존 예제에서 제공하는 네트워크와 다른 CNN 모델을 활용한 성능 평가 진행 예정

Model	LCC (mean)	SRCC (mean)	LCC (std.dev)	SRCC (std.dev)	EMD
Kim et al. [16]	0.80	0.80	_	_	_
Moorthy et al. [39]	0.89	0.88	_	_	_
Mittal et al. [40]	0.92	0.89	_	_	_
Saad et al. [41]	0.91	0.88	_	_	_
Kottayil et al. [42]	0.89	0.88	_	_	_
Xu et al. [35]	0.96	0.95	_	_	_
Bianco et al. [7]	0.96	0.96	_	_	_
NĪMĀ(MobileNet)	0.782	0.698	0.209	0.181	0.105
NIMA(VGG16)	0.941	0.944	0.538	0.557	0.054
NIMA(Inception-v2)	0.827	0.750	0.470	0.468	0.064

[1] Talebi, Hossein, and Peyman Milanfar. "NIMA: Neural Image Assessment." IEEE Transactions on Image Processing 27, no. 8 (August 2018): 3998–4011. https://doi.org/10.1109/TIP.2018.2831899.

- [1] 논문의 경우, VGG16을 적용했을 때의 성능이 가장 높게 나오는 것을 확인할 수 있으며, 네트워크마다 성능 차가 발생
- 따라서, 예제에 제공되는 MobileNet 외 다양한 CNN 모델을 활용하여, 성능 분석 및 평가를 수행할 예정

THANK YOU

Quantify Image Quality Using Neural Image Assessment

신경 이미지 평가를 활용한 이미지 품질 정량화 🗤

오영우

조선대학교컴퓨터공학과석사과정

CONTENTS v2

- **데이터 증진 및 정규화**Data Augmentation and Normalization
- 이2 네트워크 로드 및 설정 Network Loading and Settings
- 주요 매트릭 분석 Analysis of Key Metrics
- 고델별 성능 분석
 Performance Analysis for Each Model

■ 데이터 증진 및 정규화

Augmentation

```
numTrain = floor(0.70 * nImg);
Split dataset for training
                                    numVal = floor(0.15 * nImg);
                                    Idx = randperm(nImg);
                                    idxTrain = Idx(1:numTrain);
                                    idxVal = Idx(numTrain+1:numTrain+numVal);
                                    idxTest = Idx(numTrain+numVal+1:nImg);
                                    dsTrain = subset(dsCombined,idxTrain);
                                     dsVal = subset(dsCombined,idxVal);
                                     dsTest = subset(dsCombined,idxTest);
                                    inputSize = [224 224];
Augment the training data
                                    dsTrain = transform(dsTrain,@(x)augmentDataForNIMA(x,inputSize));
```

[1] Talebi, Hossein, and Peyman Milanfar. "NIMA: Neural Image Assessment." IEEE Transactions on Image Processing 27, no. 8 (August 2018): 3998-4011. https://doi.org/10.1109/TIP.2018.2831899

- 학습, 검증, 테스트 단계에 사용되는 데이터 분할 비율은 70: 15: 15 비율로 구성됨
- 학습 성능 개선과 Overfitting 문제를 줄이기 위해 이미지 크기를 줄이고, 50%의 확률로 인위적인 이미지 회전을 취함

F

1 - 2 데이터 증진 및 정규화 Z-점수 정규화

- 01 네트워크의 입력 계층은 <mark>훈련 이미지의 Z-점수 정규화</mark>를 수행
- (2)Z-점수 정규화를 수행하기 위해 학습 데이터 셋 이미지에 대한 평균 및 표준편차를 계산하는 과정을 수행'(X Mean) / Standard Deviation' changes the value so that some data corresponds to the standard normal distribution.

[1] Talebi, Hossein, and Peyman Milanfar. "NIMA: Neural Image Assessment." IEEE Transactions on Image Processing 27, no. 8 (August 2018): 3998–4011. https://doi.org/10.1109/TIP.2018.2831899.

- 본 예제에서 활용되는 데이터셋의 경우, 이미지와 주관적 평가를 모두 포함하므로 주관적 평가에 대한 평균 및 분포 등의 정규화 과정을 수행
- Z-점수 정규화 수행을 위해 Argumentation된 학습 데이터 셋 이미지에 대한 평균과 표준편차를 계산

F

1-3 데이터 증진 및 정규화 **훈련 데이터 배치**

04 해당 예제의 배치 데이터 추출 방식은 'SSCB (Spatial, Spatial, Channel, Batch)' 형식을 따름

```
Batch training data

miniBatchSize = 128;
mbqTrain = minibatchqueue(dsTrain,MiniBatchSize=miniBatchSize, ...
PartialMiniBatch="discard",MiniBatchFormat=["SSCB",""], ...
DispatchInBackground=canUseGPU);
mbqVal = minibatchqueue(dsVal,MiniBatchSize=miniBatchSize, ...
MiniBatchFormat=["SSCB",""],DispatchInBackground=canUseGPU);

MATLAB )> deep learning toolbox >> help >> function >> minibatchqueue

mbq = minibatchqueue(augimdsTrain, ...
MiniBatchSize=miniBatchSize, ...
MiniBatchFor=@preprocessMiniBatch, ...
```

MiniBatchFormat=["SSCB" ""]);

https://kr.mathworks.com/help/deeplearning/ref/dlnetwork.forward.html

[1] Talebi, Hossein, and Peyman Milanfar. "NIMA: Neural Image Assessment." IEEE Transactions on Image Processing 27, no. 8 (August 2018): 3998-4011. https://doi.org/10.1109/TIP.2018.2831899.

- 본 예제에서는 SSCB 형식의 배치 데이터 추출 방식을 활용
- Batch size의 경우, 128로 지정되었으나 다양한 64, 256에 대한 배치 사이즈 조정 후 학습 했을 때의 학습 성능 평가가 요구 됨

2-1 네트워크로드 및 설정 학습된 모델 호출 및 변환

- 01 본 예제의 경우 ImageNet [2]에서 훈련된 MobileNet-v2 CNN을 활용
- 02 MobileNet-v2의 각 계층은 1~10까지의 점수를 나타내며, <mark>각 이미지에 대한 점수 확률을 예측</mark>

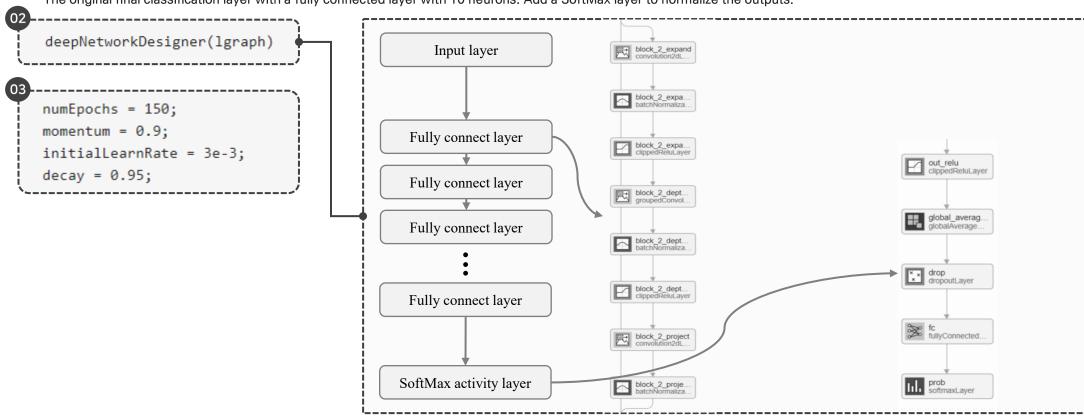
```
net = mobilenetv2;
   Load and convert the MobileNet
                                                  lgraph = layerGraph(net);
    Normalization of input images
                                                  inLayer = imageInputLayer([inputSize 3],Name="input", ...
                                                      Normalization="zscore", Mean=meanImage, StandardDeviation=stdImage);
                                                  lgraph = replaceLayer(lgraph, "input 1", inLayer);
                                                  lgraph = removeLayers(lgraph,["ClassificationLayer Logits","Logits softmax","Logits"]);
       Setting hyperparameters
                                                  newFinalLayers = [
                                                      dropoutLayer(0.75,Name="drop")
                                                      fullyConnectedLayer(newMaxScore,Name="fc",WeightLearnRateFactor=10,BiasLearnRateFactor=10)
                                                      softmaxLayer(Name="prob")];
                                                  lgraph = addLayers(lgraph,newFinalLayers);
                                                  lgraph = connectLayers(lgraph, "global average pooling2d 1", "drop");
                                                  dlnet = dlnetwork(lgraph);
[2] ImageNet. https://www.image-net.org.
```


- 네트워크의 입력 이미지는 224 X 224 픽셀이며, 이미지의 평균과 표준 편차를 이용하여 이미지 데이터에 대한 Z-점수 정규화를 수행
- (5)번의 경우, CNN 계층의 학습률 및 Drop-out 정도를 지정할 수 있으며, 본 예제에서는 각각 10배, 75%를 설정

2-2 네트워크 로드 및 설정 네트워크 시각화 및 분석

01 사전 학습된 MobileNet-v2 CNN 및 SGDM (Stochastic Gradient Descent with Momentum) optimizer를 활용

The original final classification layer with a fully connected layer with 10 neurons. Add a SoftMax layer to normalize the outputs.



[2] ImageNet. https://www.image-net.org.

- 본 예제에 활용되는 'MobileNet-v2' 네트워크 모델은 완전 연결계층과 마지막 출력 계층에서의 SoftMax가 활용
- 각각의 연결 계층은 입력된 이미지에 대한 점수를 예측하는데 사용되며, 배치 정규화, Drop-out 등이 사용

2-3 네트워크 로드 및 설정 NIMA **학습 및 평가**

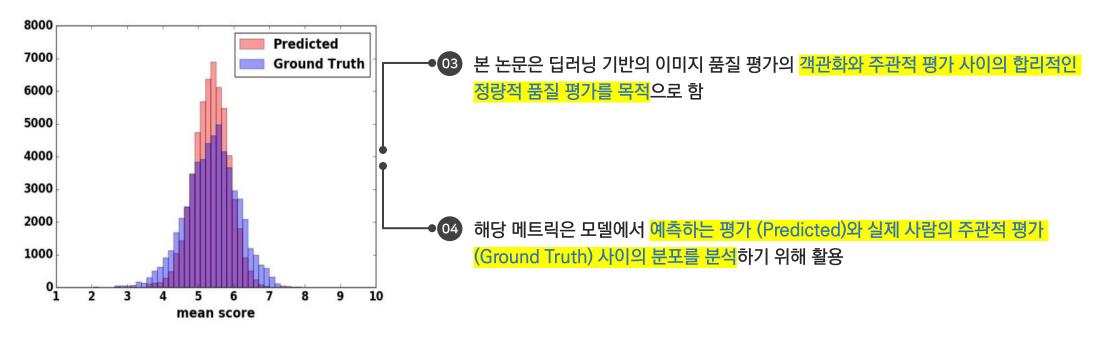
- NIMA 모델의 학습 과정은 일반적인 CNN 방식과 동일하게 수행되므로 생략 NIMA의 학습 과정은 일반적인 CNN과 동일하게 학습을 수행하며, 이미지의 특징을 학습 및 예측하는 것이 아닌, 각 이미지 별 점수에 대한 분포를 예측하는 것에 중점적!
- 02 본 예제는 기존 CNN 기반의 품질 평가 기법에서 수행되는 방식이 아닌 <mark>3가지 주요 메트릭 (EMD, ACC, CC)</mark>을 통한 모델의 학습 성능을 판단

- [1] Talebi, Hossein, and Peyman Milanfar. "NIMA: Neural Image Assessment." IEEE Transactions on Image Processing 27, no. 8 (August 2018): 3998–4011. https://doi.org/10.1109/TIP.2018.2831899.
- [3] Sandler, Mark, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. "MobileNetV2: Inverted Residuals and Linear Bottlenecks." In 2018 IEEE/CVF, 4510–20. Salt Lake City, UT.
- [5] Hou, Le, Chen-Ping Yu, and Dimitris Samaras. "Squared Earth Mover's Distance-Based Loss for Training Deep Neural Networks." Preprint, submitted November 30, 2016. https://arxiv.org/abs/1611.05916.

- NIMA 모델의 학습 과정은 일반적인 CNN 방식과 동일하게 처리되므로 설명을 생략
- 딥러닝 기반의 이미지 품질 평가 방식과 달리 3가지 주요 메트릭인 EMD, ACC, CC 등을 통해 모델의 학습 성능을 판단

3-1 주요 메트릭 분석 EMD (Earth Mover's Distance)

- 01 EMD의 사전적 정의, '확률 분포 A를 확률 분포 B로 변환 할 때의 필요한 일의 총량을 의미'
- © 즉, 인간이 각 이미지에 대해 정의한 <mark>주관적 평가들의 분포와 모델이 예측한 평가의 분포가 얼마나 최소화 되는가</mark>에 집중하는 성능 지표

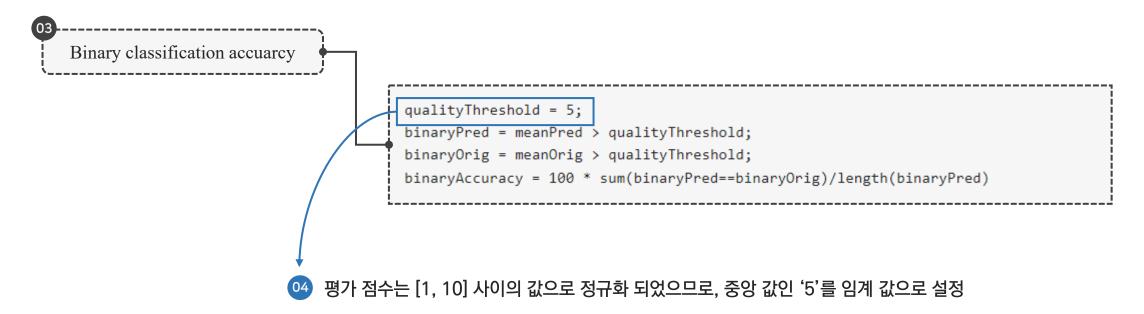


- [1] Talebi, Hossein, and Peyman Milanfar. "NIMA: Neural Image Assessment." IEEE Transactions on Image Processing 27, no. 8 (August 2018): 3998-4011. https://doi.org/10.1109/TIP.2018.2831899.
- [3] Sandler, Mark, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. "MobileNetV2: Inverted Residuals and Linear Bottlenecks." In 2018 IEEE/CVF, 4510–20. Salt Lake City, UT.
- [5] Hou, Le, Chen-Ping Yu, and Dimitris Samaras. "Squared Earth Mover's Distance-Based Loss for Training Deep Neural Networks." Preprint, submitted November 30, 2016. https://arxiv.org/abs/1611.05916.

- 본 논문의 주요 목적은 실제 사람이 평가하는 주관적 점수와 모델의 예측하는 객관적 점수 간 합리적인 평가를 가능케 하는 것
- 주관적 평가 (Ground Truth)와 모델 예측 점수 (Predicted) 간 EMD 값이 낮을수록 모델이 인간의 주관 평가와의 높은 상관성을 달성

3-2 주요 메트릭 분석 Classification Acc.

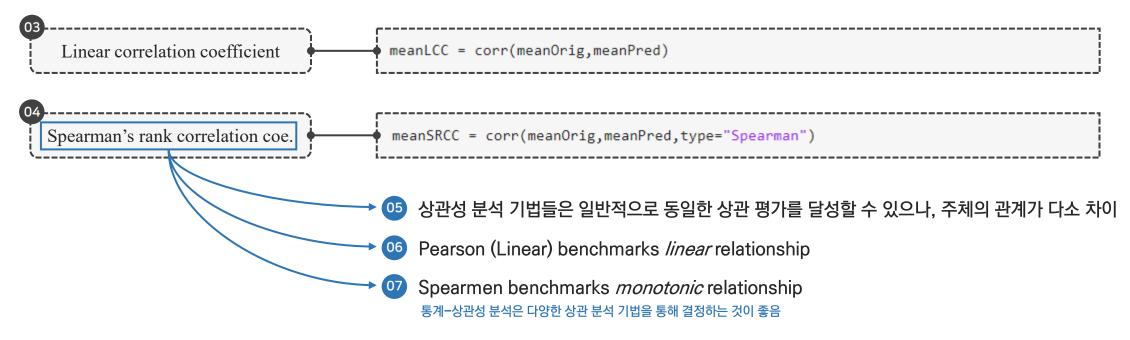
- 01 본 예제는 딥러닝 기반 이미지 품질 평가 기법과 동일하게 Binary 분류 정확도 (고/저품질)를 성능 지표로 채택
- 02 '품질_임계값' 변수를 활용하여 고/저품질 분류를 수행



- 고/저품질 분류의 성능을 확인하기 위한 분류 정확도를 채택
- 임계 값 설정을 통해, 두 분류에 대한 정확도를 분석하였으나, '5'로 선정하는 것이 정확한 설계인지 의문

3-3 ^{주요 메트릭 분석} Correlation Coefficients

- 01 본 논문의 주요 목표는 주관적 평가와 모델이 예측한 평가 사이의 차이를 최소화하는 것
- 02 모델에서 <mark>예측한 평가 점수와 실제 사람이 측정한 주관적 평가 간의 상관성</mark>이 높을수록 상관 계수 값이 크게 나타남



https://www.surveymonkey.com/market-research/resources/pearson-correlation-vs-spearman-correlation/https://stats.stackexchange.com/questions/8071/how-to-choose-between-pearson-and-spearman-correlationhttps://www.statisticssolutions.com/free-resources/directory-of-statistical-analyses/correlation-pearson-kendall-spearman/

- 주관적 평가와 모델이 예측한 평가 사이의 값이 최소화하는 것이 본 연구의 주요 목표
- 따라서, 주관적 평가와 예측한 평가 간의 상관성이 높을수록 모델의 성능이 타 기법 대비 높음을 시사할 수 있음

모델별 성능 분석 MobileNet vs VGG-16

- 전 <mark>예제에 활용된 'MobileNet-v2'와 논문에서 언급한 'VGG-16' 간의 학습 성능</mark>을 분석 (두 모델은 ImageNet [2]에서 사전 학습을 완료)
- ② 실제 학습 결과, 논문에서 언급한 바와 같이 'VGG-16'가 가장 높은 성능을 기록할 수 있음을 확인

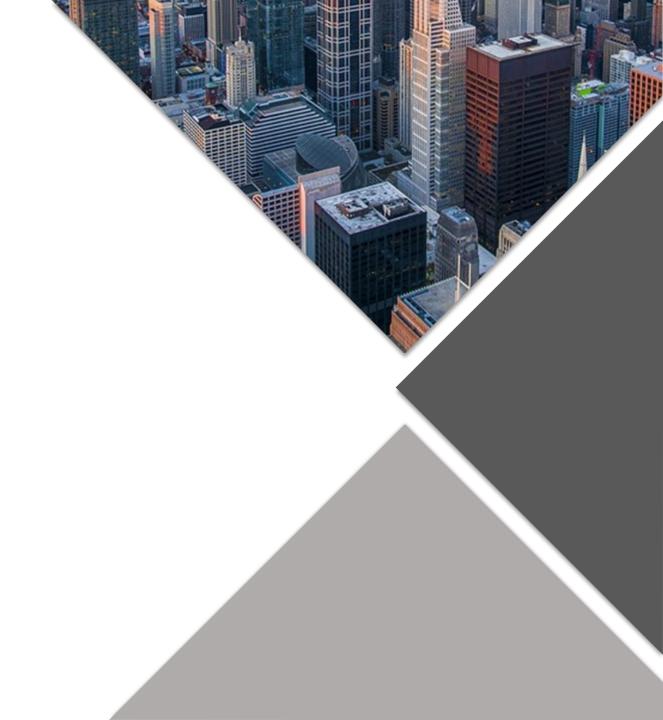
Metrics	MobileNet-v2	VGG-16		
EMD	0.0643	0.8133		
Classification acc.	76.245	84.734		
LCC	0.6970	0.8523		
SRCC	0.6755	0.8244		

Model	LCC (mean)	SRCC (mean)	LCC (std.dev)	SRCC (std.dev)	EMD
Kim et al. [16]	0.80	0.80	_	_	_
Moorthy et al. [39]	0.89	0.88	_	_	_
Mittal et al. [40]	0.92	0.89	_	_	_
Saad et al. [41]	0.91	0.88	_	_	_
Kottayil et al. [42]	0.89	0.88	_	_	_
Xu et al. [35]	0.96	0.95	_	_	_
Bianco et al. [7]	0.96	0.96	_	_	_
NIMA(MobileNet)	0.782	0.698	0.209	0.181	0.105
NIMA(VGG16)	0.941	0.944	0.538	0.557	0.054
NIMA(Inception-v2)	0.827	0.750	0.470	0.468	0.064

- [1] Talebi, Hossein, and Peyman Milanfar. "NIMA: Neural Image Assessment." IEEE Transactions on Image Processing 27, no. 8 (August 2018): 3998-4011. https://doi.org/10.1109/TIP.2018.2831899.
- [3] Sandler, Mark, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. "MobileNetV2: Inverted Residuals and Linear Bottlenecks." In 2018 IEEE/CVF, 4510–20. Salt Lake City, UT.
- [5] Hou, Le, Chen-Ping Yu, and Dimitris Samaras. "Squared Earth Mover's Distance-Based Loss for Training Deep Neural Networks." Preprint, submitted November 30, 2016. https://arxiv.org/abs/1611.05916.

- 예제와 논문에 활용된 'MobileNet-v2', 'VGG-16' 간 학습 성능 분석을 수행
- 논문에 언급한 바와 같이 'VGG-16' 네트워크 모델이 예제에 활용된 'MobileNet-v2' 대비 높은 성능을 제공할 수 있음을 확인

THANK YOU



Chapter 10. Morphological Operations (ঞ্জাক্ষ্প্রতি) গা

오영우

조선대학교컴퓨터공학과석사과정

CONTENTS

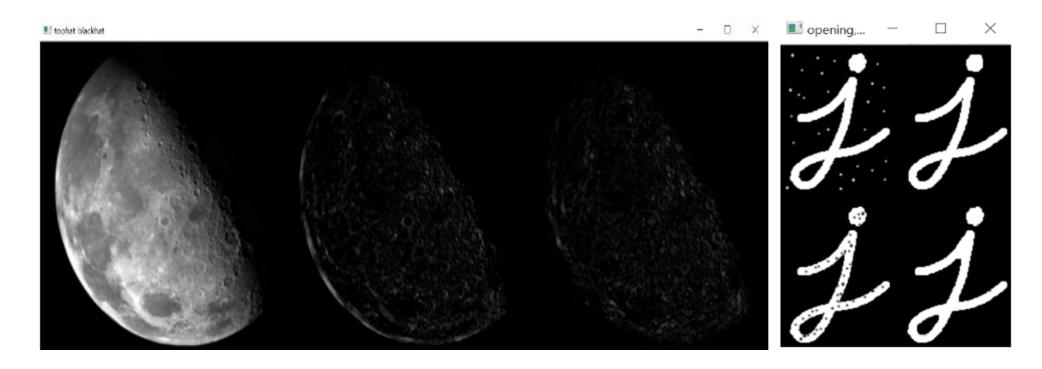
101 챕터 소개 Introduction of chapter

90 및 정의 설명 Explanation of term

다음 발표 내용 Next presentation

1 - 1 ^{챕터 소개} 챕터의 주요 구성

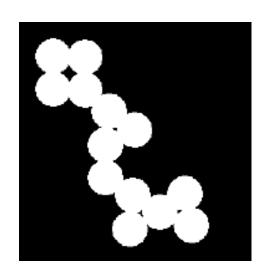
- 01 Image Processing Toolbox 모폴로지 함수에 대해 학습
- 02 모폴로지 함수의 주요 기능은 '대비 향상', '노이즈 제거', '골격화', '채우기 및 분할' 등의 이미지 처리 작업을 지원

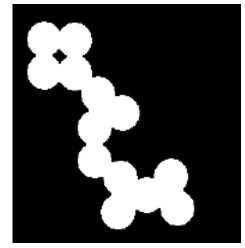


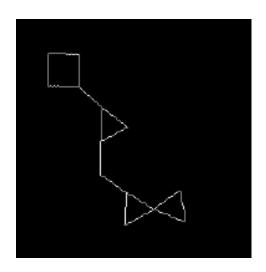
- 형태학적 연산은 학습 이미지 데이터에 대한 노이즈 제거, 분할, 채우기 등의 다양한 전처리 기능을 제공
- 팽창 연산을 적용한 이미지에 대해 침식 연산을 적용한 이미지를 빼는 등의 그레디언트(Gradient) 연산을 포함

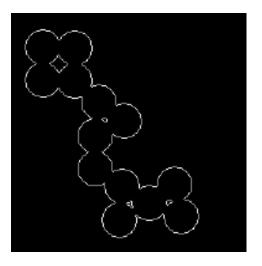
1-2 ^{챕터 소개} 주요 학습 내용

- 01 Morphology(형태학)는 '모양'을 기반으로 이미지를 처리하는 광범위한 이미지 처리 기법을 포함함
- 02 본 장에서 다루는 '형태학적 연산'은 구조 요소를 입력 이미지에 적용하여 동일한 이미지 크기의 출력 이미지를 생성
- 03 이때, 모폴로지 연산(형태학적 연산)의 출력 이미지는 입력 이미지의 해당 픽셀과 이웃 픽셀의 비교를 기반으로 수행됨





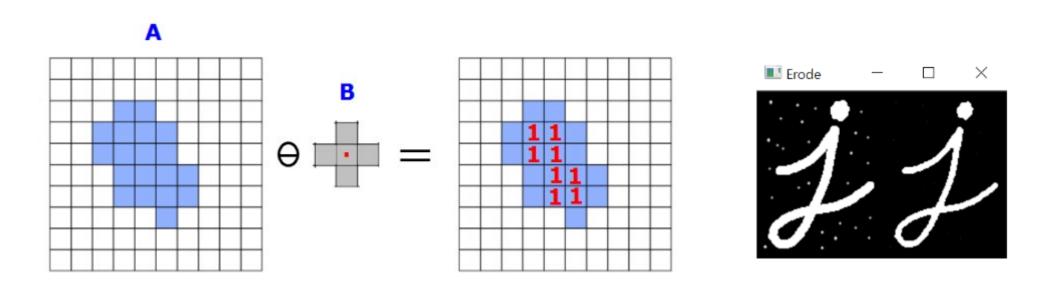




- 학습 이미지셋에 대해 외곽을 추출하거나, 노이즈를 추가, 빈 공간을 채워 넣는 등의 여러 기능을 지원하는 함수를 포함
- 그러나, 해당 기법은 인간 느끼는 주관적인 평가와 상반되는 경우가 빈번히 발생

2-1 용어 및 정의 설명 Erosion (침식)

- 01 침식(Erosion)이란 말 그대로 형태를 깎아 내는 것으로 이미지를 깎아 내는 연산을 뜻함
- 02 침식 연산 수행을 위해 구조화 요소 커널 (Structuring element kernel)이라는 0과 1로 구성된 커널이 요구됨



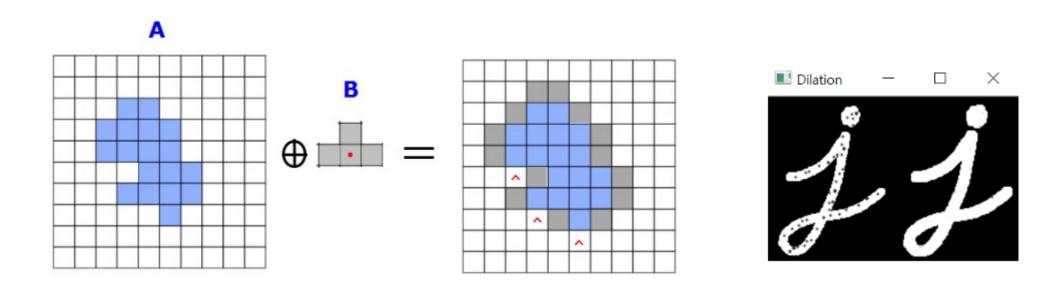
http://blog.daum.net/shksjy/314

https://bkshin.tistory.com/m/entry/OpenCV-19-%EB%AA%A8%ED%8F%B4%EB%A1%9C%EC%A7%80Morphology-%EC%97%B0%EC%82%B0-%EC%B9%A8%EC%8B%9D-%ED%8C%BD%EC%B9%B8%B%AB%ED%9E%98-%EA%B7%B8%EB%A0%88%EB%94%94%EC%96%B8%ED%8A%B8-%ED%83%91%ED%96%87-%EB%B8%94%EB%96%87

- 침식 연산은 큰 물체의 주변을 깎는 기능을 수행하며, 작은 물체에 대해 제거를 수행하므로써 노이즈 제거에 탁월한 성능을 제공
- 실제 침식 연산 결과, 노이즈가 제거되었으며, 글씨가 전반적으로 가늘어졌음을 확인할 수 있음

2-2 용어 및 정의설명 Dilation (팽창)

- 01 팽창(Dilation)은 침식* 과 반대로 물체의 주변을 확장을 수행하는 연산을 의미함
- 02 팽창은 침식과 반대로 구조화 요소 커널과 완전히 겹치지 않으면 1로 변경하며, 구조화 요소 커널의 형태는 십자, 일자 등 다양하게 존재



http://blog.daum.net/shksjy/314

https://bkshin.tistory.com/m/entry/OpenCV-19-%EB%AA%A8%ED%8F%B4%EB%A1%9C%EC%A7%80Morphology-%EC%97%B0%EC%82%B0-%EC%B9%A8%EC%8B%9D-%ED%8C%BD%EC%B9%B8%B%AB%ED%9E%98-%EA%B7%B8%EB%A0%88%EB%94%94%EC%96%B8%ED%8A%B8-%ED%83%91%ED%96%87-%EB%B8%94%EB%96%87

- 팽창 연산은 침식 연산과 같이 노이즈 제거에 탁월한 성능을 제공
- 실제 팽창 연산 결과, 'J' 글씨가 더 팽창되긴 했으나 글씨 안에 존재하는 노이즈가 제거된 것을 확인할 수 있음

3-1 다음 발표 내용 **모폴로지 연산과 구조적 요소**

- "Types of Morphological Operations" on page 10-2
- "Structuring Elements" on page 10-9
- "Border Padding for Morphology" on page 10-13
- "Morphological Reconstruction" on page 10-14
- "Find Image Peaks and Valleys" on page 10-21
- "Pixel Connectivity" on page 10-27
- "Lookup Table Operations" on page 10-30
- "Dilate an Image to Enlarge a Shape" on page 10-32
- "Remove Thin Lines Using Erosion" on page 10-36
- "Use Morphological Opening to Extract Large Image Features" on page 10-38
- "Flood-Fill Operations" on page 10-42
- "Detect Cell Using Edge Detection and Morphology" on page 10-45
- "Granulometry of Snowflakes" on page 10-50
- "Distance Transform of a Binary Image" on page 10-55
- "Label and Measure Connected Components in a Binary Image" on page 10-57

- 1차 발표는 간단한 챕터의 소개와 2차 발표에 포함되는 내용을 일부 확인하였음
- 2차 발표에서는 모폴로지 연산의 종류와 실행결과 그리고, 구조적 요소에 대해 다룸

2차 발표 범위

PRESENTATION END

THANK YOU

Chapter 10. Morphological Operations (ঞাল্বপ্রথা) v2

오영우

조선대학교컴퓨터공학과석사과정

CONTENTS

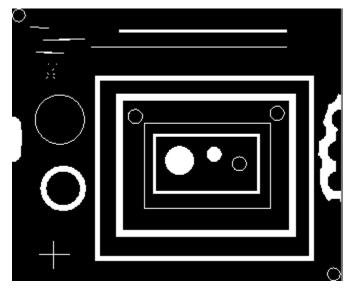
101 Erosion & Dilation 침식과 팽창

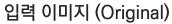
Reconstruction 형태학적 재구성

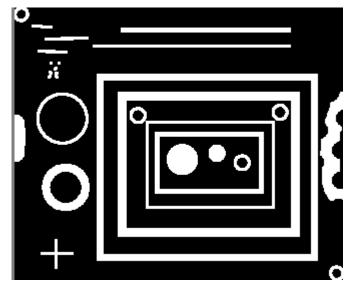
Maker & Mask 마커, 마스크 이미지

T - 1 Erosion & Dilation 침식과 팽창

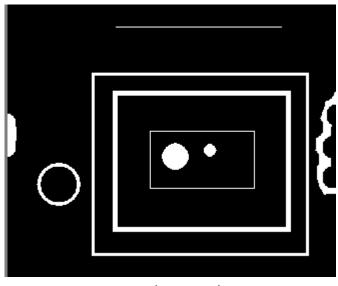
- 1 Image Processing Toolbox 모폴로지 함수 동작의 두 가지 기본 동작을 학습
- 02 침식(Erosion)이란 말 그대로 형태를 깎아 내는 것으로 이미지를 깎아 내는 연산을 뜻함
- 03 팽창(Dilation)은 침식(Erosion)과 반대로 물체의 주변을 확장을 수행하는 연산을 의미함







팽창 (Dilation)

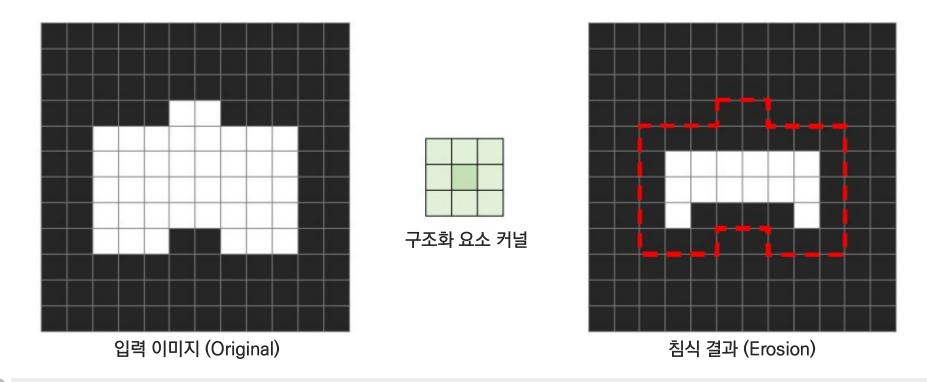


침식 (Erosion)

- 형태학적 (모폴로지) 연산의 기본 원칙은 '침식', '팽창'을 활용
- 이때, 침식은 형태를 깎아내리는 등의 이미지 축소 효과를, 팽창은 물체 주변을 확장하여 이미지를 확대하는 효과를 지님

1-2 Erosion & Dilation 침식

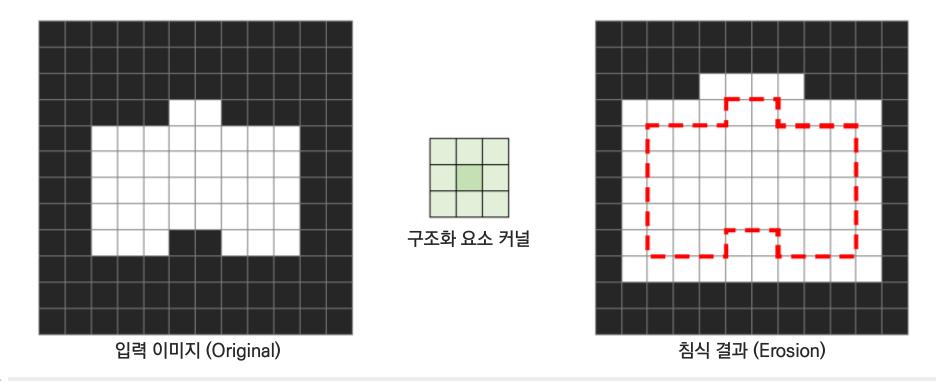
- 02 침식 연산 수행을 위해 구조화 요소 커널 (Structuring element kernel)이라는 0과 1로 구성된 커널이 요구됨



- 침식 연산은 큰 물체의 주변을 깎는 기능을 수행하며, 작은 물체에 대해 제거를 수행하므로써 노이즈 제거에 탁월한 성능을 제공
- 실제 침식 연산 결과, 노이즈가 제거되었으며, 글씨가 전반적으로 가늘어졌음을 확인할 수 있음

1-3 Erosion & Dilation 팽창

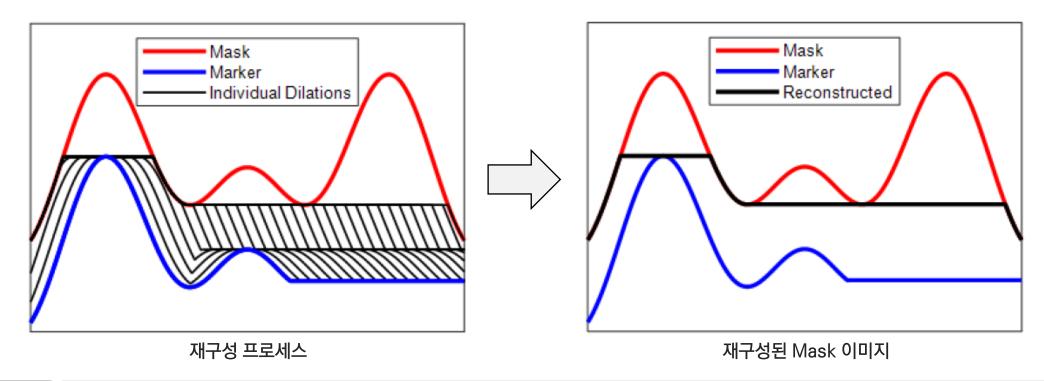
- 01 팽창(Dilation)은 침식(Erosion)과 반대로 물체의 주변을 확장을 수행하는 연산을 의미함
- @ 팽창은 침식과 반대로 구조화 요소 커널과 완전히 겹치지 않으면 1로 변경하며, 구조화 요소 커널의 형태는 십자, 일자 등 다양하게 존재



- 팽창 연산은 침식 연산과 같이 노이즈 제거에 탁월한 성능을 제공
- 실제 팽창 연산 결과, 'J' 글씨가 더 팽창되긴 했으나 글씨 안에 존재하는 노이즈가 제거된 것을 확인할 수 있음

2-1 Reconstruction 형태학적 재구성

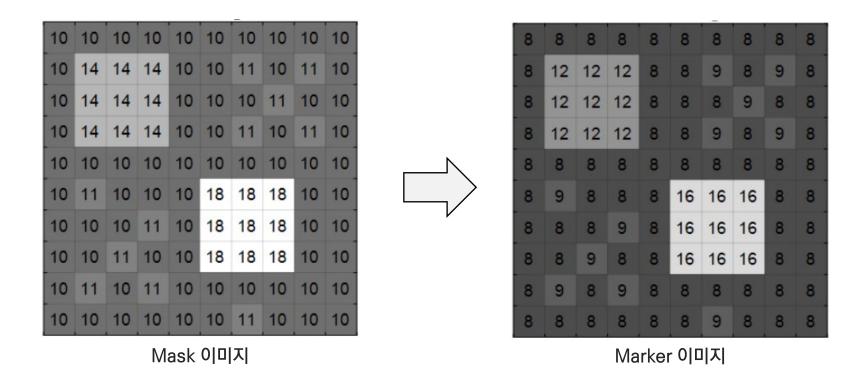
- 01 이미지를 향상 시키고자 하는 이미지를 'Mask'라고 하며, 'Marker'는 추출 및 강조할 영역을 표시하기 위해 사용
- 02 재구성 과정에서 마스크 이미지에 의한 제약에 의해 온전한 재구성이 불가능할 수 있음
 - * 형태학적 재구성 (Reconstruction)은 지정된 마커를 시작으로 연속적인 팽창 과정에 의해 처리 됨



- 형태학적 재구성 (Reconstruction)은 이미지 내의 객체를 추출하거나, 표현을 강조하는 등 다양하게 활용
- 시작 (강조)되는 마커를 기준으로 연속적 팽창 프로세스를 통해 재구성된 이미지. 즉, Mask 이미지를 얻어낼 수 있음

2-2 Reconstruction 마커와 마스크 이미지

- 01 이미지의 재구성은 Marker와 Mask라는 2개의 이미지에 의해 처리되며, 프로세스는 연속적 팽창 과정을 거침
- 02 즉, 재구성 과정을 위해서 Marker와 Mask라는 2개의 이미지의 사전 처리가 요구됨



- 입력되는 Mask 이미지에 대한 Marker 이미지 생성은 Mask 이미지의 픽셀에 상수를 증분하여 얻을 수 있음
- 이때, 증분 된 최대 픽셀의 크기는 최초 입력된 Mask 이미지의 최대 픽셀 값을 초과할 수 없음

3-1 Marker & Mask 마커와 마스크 이미지

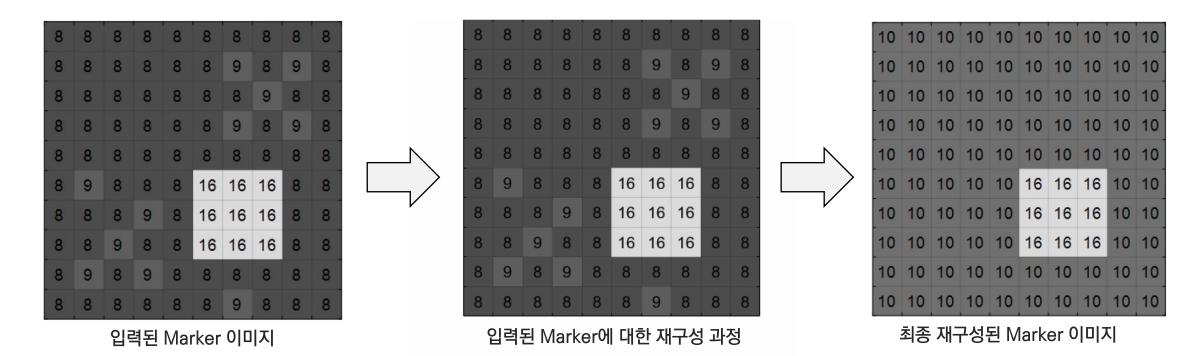
- 01 Marker 이미지 내 증분 과정을 통해 최소 값을 지닌 픽셀을 모두 동일한 값으로 처리
- 02 아래 예시와 같이 피크가 2개 이상인 경우, 피크 중 하나를 제거하여 최대 픽셀 값을 남기도록 함

	8	8	8	8	8	8	8	8	8		10	10	10	10	10	10	10	10	10	10	10	10	10	10	10		10	10 10	10 10 10	10 10 10 10
12	2	12	12	8	8	9	8	9	8		10	12	12	12	10	10	10	10	10	10	10	10	10	10	10	1	0	0 10	0 10 10	0 10 10 1
}	12	12	12	8	8	8	9	8	8		10	12	12	12	10	10	10	10	10	10	10	10	10	10	10	1(0	0 10	0 10 10	0 10 10 1
	12	12	12	8	8	9	8	9	8		10	12	12	12	10	10	10	10	10	10	10	10	10	10	10	10)	10	10 10	10 10 10
;	8	8	8	8	8	8	8	8	8		10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10		10	10 10	10 10 10
}	9	8	8	8	16	16	16	8	8		10	10	10	10	10	16	16	16	10	10	10	10	10	10	10	16		16	16 16	16 16 1
	8	8	9	8	16	16	16	8	8	V	10	10	10	10	10	16	16	16	10	10	10	10	10	10	10	16	;	16	16 16	16 16 1
	8	9	8	8	16	16	16	8	8		10	10	10	10	10	16	16	16	10	10	10	10	10	10	10	16		16	16 16	16 16 1
8	9	8	9	8	8	8	8	8	8		10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10)	10	10 10	10 10 1
8	8 8 8 8 8 9 8 8 8									10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10)	10	10 10	10 10 1	
	 Marker 이미지의 재구성 과정								17	 다 재	 구성	[된 l	/lar	ker	0 0	 지			2	 차 지	 H구성	 성된	Ma	r	rker	rker 0 0	rker 이미지			

- Marker 이미지는 Mask 이미지에 대한 강조 및 표현을 표시하게 위해 사용되며 증분 과정을 통해, 이미지 내 픽셀의 최소 값을 정규화
- 증분과정을 통해 산출되는 여러 Peak 중 특정 Peak를 지우거나, 포함하여 Mask 이미지의 강조 부분을 표기할 수 있음

3-2 Marker & Mask 마커와 마스크 이미지

- 01 Peak가 하나만 존재하는 경우, 아래와 같이 증분 과정을 통해 Marker 이미지를 산출
- 02 이때, 재구성되는 이미지의 픽셀 값은 최대 Peak의 값을 초과할 수 없음



- 형태학적 재구성 (Reconstruction)은 이미지 내의 객체를 추출하거나, 표현을 강조하는 등 다양하게 활용
- 이때, 향상 시키고자 하는 입력 이미지를 'Mask', 입력된 이미지를 추출하거나 강조할 영역을 표시하는 것을 'Marker'라고 함

THANK YOU

Chapter 10. Morphological Operations (ঞ্জাক্ষ্বপ্রা)v3

오영우

조선대학교컴퓨터공학과석사과정

CONTENTS

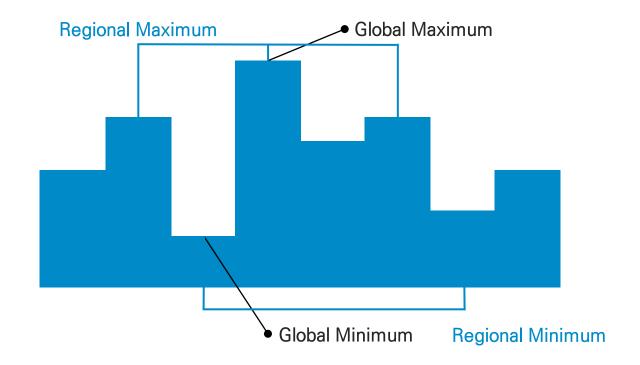
O1Global & Regional전역 및 지역 최대, 최소값

02Related Work학제간 연구: 영상처리와 무선 통신

Next Session 다음 발표 내용

1 - 1 Global & Regional 전역 및 지역의 최대, 최소

- 01 이미지 데이터의 경우, 여러 지역 최대, 최소 값이 존재하므로 전체 이미지에 대한 전역 최대, 최소 값을 찾는 것이 필요
- 1 Image Processing Toolbox 모폴로지 함수는 이러한 픽셀의 전역 및 지역의 최대, 최소 값을 찾도록 지원



- 이미지 및 영상 데이터의 경우, 다양한 지역 최대 및 최소 값을 지니기에, 전체 입력 이미지에 대한 최대, 최소 값을 판별하는 것이 요구 됨
- 이때, 모폴로지 함수는 모든 지역 최대, 최소 값을 찾거나, 특정 임계 값을 기반으로 값을 찾는 등의 여러 함수를 지원

1 - 2 Global & Regional 최대 값 탐색 (1)

- 01 imregionalmax, imregionalmin 함수는 모든 지역의 최대 및 최소 값 탐색을 지원
 - * 모든 지역 변수에 대한 값 탐색을 수행하므로, 전역과 지역에 대한 구분 판별할 수 없음

										B =									
A = [10]	10	10	10	10	10	10	10	10	10;		0	0	0	0	0	0	0	0	0
10	14	14	14	10	10	11	10	11	10;	0	1	1	1	-	-	1	0	1	_
10	14	14	14	10	10	10	11	10	10;	0	1	1	1	0	0	1	Ü	1	0
		14	14							0	1	1	1	0	0	0	1	0	0
10	14			10	10	11	10	11	10;	0	1	1	1	0	0	1	0	1	0
10	10	10	10	10	10	10	10	10	10;	0	0	0	0	0	0	0	0	0	0
10	11	10	10	10	18	18	18	10	10;	0	1	0	0	0	1	1	1	0	ō
10	10	10	11	10	18	18	18	10	10;	0	'	0	-		'				
10	10	11	10	10	18	18	18	10	10;	0	0	U	1	0	1	1	1	0	0
									-	0	0	1	0	0	1	1	1	0	0
10	11	10	11	10	10	10	10	10	10;	0	1	0	1	0	0	0	0	0	0
10	10	10	10	10	10	11	10	10	10];	0	0	0	0	0	0	1	0	0	0
																•			
			(입력 이	미지〉							<pre>/im</pre>	reai	onalm	nax 한	수 실형	ᅢ 결과	>	
			\	_ 1 1	1. 1.							`	9 -	J. -		_ = 0) = -1	/	

B = imregionalmax(A)

- 모든 지역에 대한 최대 값 탐색과 특정 임계 값 기반의 최대 값 탐색을 지원
- 이때, 탐색된 결과는 0과 1로 표현되며, 0은 최대 값이 아닌 값을 의미하고, 1은 모든 지역 내 최대 값을 나타냄

1-3 Global & Regional 최대 값 탐색 (2)

- imextendedmax, imextendedmin 함수는 특정 임계 값을 기준으로 지역의 최대 및 최소 값 탐색을 수행
 - * 인접 픽셀의 값을 허용(임계 값)하여, 천제 지역 내 값 중 조건에 부합하는 최대 값을 판별할 수 있음

A = [10	10	10	10	10	10	10	10	10	10;	В	=									
10	14	14	14	10	10	11	10	- 11	10;		0	0	0	0	0	0	0	0	0	0
10	14	14	14	10	10	10	11	10	10;		0	1	1	1	0	0	0	0	0	0
10	14	14	14	10	10	11	10	11	10;		0	1	1	1	0	0	0	0	0	0
10	10	10	10	10	10	10	10	10	10;		0	1	1	1	0	0	0	0	0	0
10	11	10	10	10	18	18	18	10	10;		0	0	0	0	0	0	0	0	0	0
10	10	10	11	10	18	18	18	10	10;		0	0	0	0	0	1	1	1	0	0
10	10	11	10	10	18	18	18	10	10;	ν	0	0	0	0	0	1	1	1	0	0
10	11	10	11	10	10	10	10	10	10;		0	0	0	0	0	1	1	1	0	0
10	10	10	10	10	10	11	10	10	10];		0	0	0	0	0	0	0	0	0	0
											0	0	0	0	0	0	0	0	0	0
			< 9	입력 이	미지〉								⟨ir	nexte	ndedm	nax함수	- 실행	결과 〉	,	

B = imextendedmax(A, 2)

- 모든 지역에 대한 최대 값 탐색하는 과정에서 임계 값을 설정하여, 인접 픽셀이 모두 최대 값인 픽셀을 탐색할 수 있음
- 그러나, 전역 최대 및 최소 값에 대한 탐색은 별도의 작업이 요구됨

2 - 1 Related Work 학제간 연구 : 영상 처리와 무선 통신

function [capacityOfSubsetMax, Ex H sel]=AS Exhaustive(Nr,Nt,Lr,SNR,H,fullAntenna) % Record the maximum channel capacity of all subset when the number of antennas selected is Lr capacityOfSubsetMax=0; $Ex_H_sel = [];$ % The number of antennas selected is Lr with a total of nchoosek (Nr,Lr) subset. for k=1:nchoosek(Nr,Lr) % Subset indexOfChannel = fullAntenna(k,:); % Selected channel matrix H Ex_H_sel=H(indexOfChannel,:); % Capacity of subset capacityOfSubset=log2(det(eye(Nt)+SNR/Nt*(Ex H sel'*Ex H sel))); % Maximum channel capacity among all subsets if(capacityOfSubset>capacityOfSubsetMax) capacityOfSubsetMax=capacityOfSubset; end end

- MIMO 시스템에서의 모든 안테나를 사용하는 것은 RF chain 생성 및 전력 소모 등의 문제를 야기
- 기존 접근 방식의 경우, 가능한 모든 안테나 부 집합을 생성하고, 해당 부집합에 따라 결정되는 채널 용량을 최대화

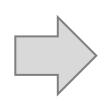
2-2 Related Work 영상 처리 기반 접근 방식

01 Max-min 정규화 기법을 통해 처리된 채널 행렬은 다음과 같이 하나의 학습 이미지로 사용할 수 있음

$$h_{ij} \longleftarrow \frac{h_{ij} - \min\{H_i\}}{\max\{H_i\} - \min\{H_i\}}, \quad for \ all \ i, j$$
 (3)

1.0000	0.9137	0.2252	0.2349	0.0000	0.7049	0.8066	0.5195
0.7220	0.5300	1.0000	0.9615	0.8863	0.0000	0.2767	0.7799
0.4215	1.0000	0.9847	0.6378	0.8566	0.0000	0.4372	0.7287
1.0000	0.3264	0.5441	0.1959	0.8721	0.0000	0.5292	0.5606
0.0000	0.4948	1.0000	0.6168	0.1889	0.7438	0.3409	0.7681
0.0000	0.7865	1.0000	0.5667	0.4338	0.5453	0.9044	0.7055
0.2248	0.0142	0.7559	0.4305	0.5064	0.2774	1.0000	0.0000
0.6323	1.0000	0.5391	0.2704	0.0000	0.1969	0.3514	0.7501

〈 정규화 된 채널 행렬의 vector (0~1) 〉



			Expe	ected I	Learni	ing Re	esults,	Activ	vate N	1arke	l Ante	enna I	ndex	ſi.il_		
	X1	X2	X3	X4	X5	X6	X7	X8	X9	X10	X11	X12	>6	$\{ = \ell_0 $) (H) (ス分
Υl	0.8	0.2	0	0.9	0.7	1	1	0.5	0.9	0.5	0.9	0	0.1	0.8	0.4	0.4
Y2	0.6	0	0.4	0	0.7	0.5	0	0.4	0.4	0.7	0.2	0	0.5	0.8	0.6	0.9
Y3	0.2	0.2	0.2	0.8	0.7	0.9	0.7	0.7	0.4	0.6	1	1	0.3	0.1	0.4	0.6
Y4	0	0.9	0.9	0.5	0.2	0.7	0.7	0.5	0.1	0.8	0.9	0.1	1	0	0.4	0
Y5	0.2	0.7	0.7	0.2	0.3	0.1	0	0.8	0.3	0.5	-	0.7	0.5	0.7	0.7	0.2
Y6	0.8	0.5	0.4	0.7	0.6	0.2	0	0.6	0.7	0.6	0.5	0.5	0.3	0.4	0.8	1
Y7	0.2	0.8	0.1	0	0.4	0.6	0.2	0.1	0.7	0.3	0.5	0.7	0.6	0.5	0.8	0.7
Y8	0.3	0.9	0.7	0.6	-0	0.9	0.1	0.9	0.3	0.4	0.8	0.1	0.6	1	0.7	0
Y9	0.7	0.2	0.7	0.3	0.5	0.2	0.9	0.4	0	-0-	0.6	1	0.3	0.8	0.3	0.1
Y10	0.5	0.4	-1-	0.3	0.6	0.6	0.6	0.6	0.3	0.1	0.8	-0-	0.8	0.4	0.9	1
Y11	0.4	0	0.8	0.6	0.5	0.6	0.3	0.8	0.3	0.9	0.3	0.8	0.8	-0	0.4	1
Y12	0.4	0.3	0.7	0.9	0.8	0.5	0.8	0.8	0.4	0.9	0.5	-1	0.8	0.1	0.2	0.1
Y13	0.5	0	0.5	-1	0.7	0.9	0.5	0.3	0.2		0.8	-1	0.7	0.2	0.3	0
Y14	0	0.3	0.1	0.7	0.9	0.3	0.1	0.8	0.5	0.7	0.7	0.4	0.7	0.6	0.5	0.2
Y15	0.5	0.8	0.4	0.8	0.7	1	0.3	0.3	0.4	-0	0.6	0.6	0.4	0.4	0.5	0.3
Y16	0.2	0.1	0.1	1	0.5	0.8	0.3	0	0.6	0.3	0.7	0.9	0.1	0.6	0.6	0.5

〈 생성된 채널 행렬 이미지 〉

* 실제 논문에 발췌된 내용은 아니며, 이해를 돕기 위한 이미지

- 기존의 접근 방식은 채널 행렬을 고려하지 않고, 조합을 이용하여 최적의 채널 용량을 생성하는 안테나 부집합에 초점
- 반면, 제안하는 방식은 송신 및 수신 과정에서 생성되는 채널 행렬(입력 데이터)에서 최적의 안테나 부 집합 패턴을 학습하는 방식

- 01 본 논문의 주요 방식은 Exhaustive 탐색과 동일하지만, 채널 행렬(입력 이미지)를 통해 최적의 안테나 부 집합(패턴)을 학습
- 02 이는 곧, CNN 정확도가 증가함에 따라 최적의 성능을 제공하는 Exhaustive searching 기법과 동일한 성능을 제공할 수 있음

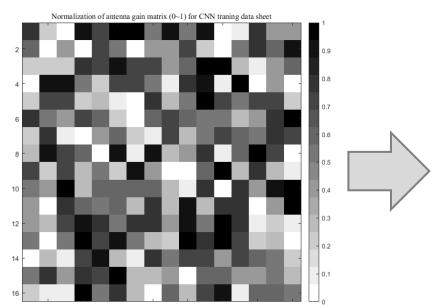


Table 1. Examples of selected antenna indices and their corresponding classes.

Selected antenna index	Corresponding class
$(1, 2, \ldots, N_s - 1, N_s)$	1
$(1, 2,, N_s - 1, N_s + 1)$	2
	•••
$(1, 2, \ldots, N_s - 1, N_r)$	L = r - s + 1
$(1, 2,, N_s - 2, N_s, N_s + 1)$	L = r-s+2
$(1, 2,, N_s - 2, N_s, N_s + 2)$	L = r-s+3

- 입력되는 채널행렬 이미지에 대해 최적의 안테나 부 집합 패턴을 학습하는 방식으로 접근
- CNN 학습 성능에 따라 실제 안테나 선택 기법의 성능이 변화되므로, 높은 정확도를 달성하는 것이 중요

2-4 Related Work CNN 모델 별 학습 성능 분석

- 01 실제 논문 결과에 따르면 ResNet의 정확도 가장 높으며, 반면 VGG-16 정확도가 가장 낮음
- 02 CNN 모델의 분류 정확도를 개선할 수 있다면, 모든 경우의 수에 대한 비교 없이 저-복잡도로 높은 채널 용량을 달성할 수 있음을 의미

Table 2. Comparison of antenna selection methods about classification accuracy.

Antenna selection method	Accuracy(%)
ResNet	79.16
LeNet	49.21
AlexNet	3.60
VGG-16	3.65
RNN	24.00
LSTM	60.00
KNN	8.29
SVM	22.12

- CNN 모델의 분류 정확도에 따라 MIMO 시스템의 전체 채널 용량 증가될 수 있음을 보임
- 특히, Exhaustive searching 기반 선택 기법 대비 월등히 적은 복잡도로 준-최적화된 성능을 제공할 수 있음

2-5 Related Work 제안 방식의 장단점

- 01 5G, 6G 네트워크에서 요구되는 안테나 및 전력 할당 기법 등의 자원할당 영역에 쉽게 적용 가능한 접근 방식
- 02 본 논문에서 제안된 CNN 기반의 안테나 선택 기법 성능에 대한 구체적인 분석이 시행되지 않고 있음

PROS	CONS
Massive MIMO 규격에 준하는 안테나 운용에도 저─복잡도로 처리가 가능	구체적인 타 기법과의 성능 <mark>분석이 시행되지 않음</mark>
최근 제안되고 있는 강화학습 기반 할당 기법과 달리 개발에 오랜 소요가 요구되지 않음	입력 데이터(채널 행렬)에 대응하는 최적의 부 집합(패턴) 생성에 오랜 시간이 소요
CNN 분류 정확도 개선된다면, 실제 채널 용량 개선의 가능성이 존재	Imperfect CSI 상황에서의 운용이 어려움

- 영상 처리 기법 및 CNN을 활용한 무선 네트워크의 자원 할당 문제를 쉽게 해결 할 수 있는 접근 방식이라고 판단 됨
- 그럼에도 불구하고, 이에 대한 후속 연구나 타 기법들 간 성능 분석이 시행되지 않음

3-1 Next Session 다음 발표 내용

- "Types of Morphological Operations" on page 10-2
- "Structuring Elements" on page 10-9
- "Border Padding for Morphology" on page 10-13
- "Morphological Reconstruction" on page 10-14
- "Find Image Peaks and Valleys" on page 10-21
- "Pixel Connectivity" on page 10-27
- "Lookup Table Operations" on page 10-30
- "Dilate an Image to Enlarge a Shape" on page 10-32
- "Remove Thin Lines Using Erosion" on page 10-36
- "Use Morphological Opening to Extract Large Image Features" on page 10-38
- "Flood-Fill Operations" on page 10-42
- "Detect Cell Using Edge Detection and Morphology" on page 10-45
- "Granulometry of Snowflakes" on page 10-50
- "Distance Transform of a Binary Image" on page 10-55
- "Label and Measure Connected Components in a Binary Image" on page 10-57

4차 발표 범위

PRESENTATION END

THANK YOU

Chapter 10. Morphological Operations (ঞাল্বপ্রথ) 4

오영우

조선대학교컴퓨터공학과석사과정

CONTENTS

Detect cell using edge detection and morphology 경계 검출 및 모폴로지를 활용한 세포 검출

Detection cell in MATLAB
MATLAB 내 세포 검출 예제

Next Session 다음 발표 내용

Detect cell using edge detection and morphology 경계 검출 및 모폴로지를 활용한 세포 검출

- 경계 검출과 기본 모폴로지 (팽창, 수축)을 활용한 전립선 암 세포 검출 예제
- 주요 목표는 이미지 내 완전한 형태의 세포를 검출 또는 분할 하는 것

Original Image

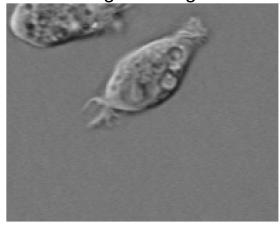
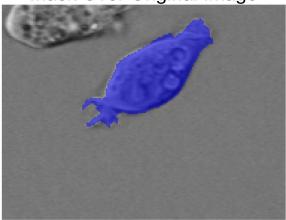


Image courtesy of Alan Partin Johns Hopkins University

Mask Over Original Image



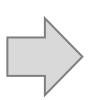
- 경계 검출과 기본 모폴로지를 사용하여 배경과 두드러지게 대비되는 세포 객체를 영상 내에서 검출하는 대한 예제
- 검출된 세포 객체를 마스크 혹은 외각선을 표시하여, 탐지된 객체를 표기할 수 있음

2-1 Detection cell in MATLAB 세포 이미지 호출

on imread(), imshow(), 함수를 통해 입력 이미지를 호출 및 표시

```
I = imread('cell.tif');
imshow(I)
title('Original Image');
text(size(I,2),size(I,1)+15, ...
   'Image courtesy of Alan Partin', ...
   'FontSize',7,'HorizontalAlignment','right');
text(size(I,2),size(I,1)+25, ....
   'Johns Hopkins University', ...
   'FontSize',7,'HorizontalAlignment','right');
```

〈 입력 이미지 호출 및 표시 〉



Original Image

Image courtesy of Alan Partin Johns Hopkins University 〈 입력 이미지 〉

- imread(), imshow() 함수를 이용하여, 'cell.tif' 입력 이미지를 호출 및 표시
- 호출된 이미지는 각각 불완전한 세포 1개와 완전한 세포 객체를 포함하고 있음

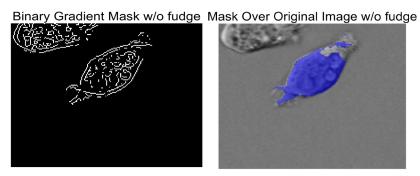
2-2 Detection cell in MATLAB 완전한 세포 객체 검출

- ①1 Edge와 sobel 연산자를 활용하여 입력 이미지에 대한 임계 값을 계산
- 02 Binary 타입의 마스크를 얻기 위해, edge 연산을 통해 얻어진 임계 값과 퍼지 값의 곱으로 다시 (BWs) edge 검출을 시행
 - * fudgeFactor를 사용하여 임계값이 하향 조정됨에 따라 검출할 수 있는 edge 연산의 결과가 증가

Binary Gradient Mask

Mask Over Original Image

〈 fudgeFactor를 통해 생성된 이진 마스크 〉

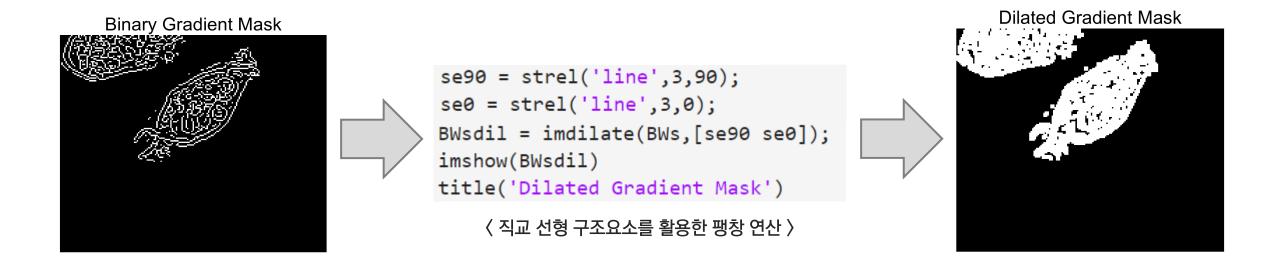


〈 fudgeFactor 없이 생성된 이진 마스크 〉

- Edge와 sobel 연산을 통해 임계 값을 계산하고, 얻어진 값에 fudgeFactor 값을 곱하여, edge 연산을 재차 실행
- 이때, fudgeFactor를 사용하여 임계 값을 하향 조정함에 따라 더 많은 edge 연산의 결과를 얻을 수 있음

2-3 Detection cell in MATLAB 입력 이미지 팽창

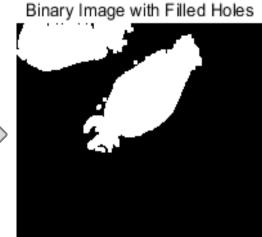
- 01 이진 기울기 마스크는 객체의 윤곽을 알아내기에 적합하지 않으므로 Sobel 영상에 대한 팽창을 수행
- © Sobel 영상에 대해 팽창을 수행하는 이유는 이진 기울기 마스크 내 객체를 둘러싼 선 간격을 제거하기 위함



- 이진 기울기 마스크 이미지에 존재하는 객체 내 선 간격을 제거하기 위해 모폴로지 연산 (팽창)을 수행
- 이때, 이미지에 대한 세로, 가로 (직교)하는 선형 구조 요소를 생성하여, 팽창을 진행

Detection cell in MATLAB 4 객체 내 빈 공간 제거

- 팽창 연산을 통해, 객체 내 선 간격을 제거하였으나, 객체 내 빈 공간이 존재하므로 이를 채우는 작업을 수행
- imfill() 함수를 활용하여, 객체 내 빈 공간 없이 객체를 채움



- 팽창 연산을 통해 객체 내 선 간격을 제거했으나, 객체 내 빈 공간이 발생하므로 이를 채우기 위한 작업이 요구
- 이를 해결하기 위해 imfill() 함수를 활용하여, 세포 객체에 대해 채워 넣는 작업을 수행

2-5 Detection cell in MATLAB 불완전 세포 객체 제거

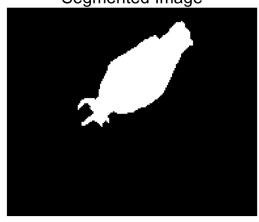
- 01 Infill() 연산 이후, 테두리에 인접한 불완전 세포 객체를 제거
- 02 imclearborder() 함수를 활용하여, 대각 연결 (불완전 세포 객체)를 제거

- Imclearborder() 함수를 이용하여, 불완전 세포 객체 제거를 수행
- 그러나, 완전한 세포 객체의 테두리의 굴곡 및 불완전하므로 이에 대한 Smoothing 작업이 요구됨

2-6 Detection cell in MATLAB 객체 평활화 및 시각화

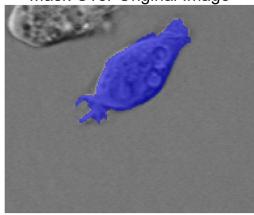
- 완전한 세포 객체만 남은 이미지를 생성하였으나, 해당 객체의 외각의 형태를 다듬는 과정이 요구됨
- 02 분할된 객체의 테두리에 대한 평활화 (침식) 작업을 수행한 뒤, Mask 및 외각 선 검출을 통한 결과 출력

Segmented Image



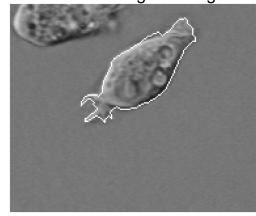
```
seD = strel('diamond',1);
BWfinal = imerode(BWnobord,seD);
BWfinal = imerode(BWfinal,seD);
imshow(BWfinal)
title('Segmented Image');
```

Mask Over Original Image



imshow(labeloverlay(I,BWfinal))
title('Mask Over Original Image')

Outlined Original Image



```
BWoutline = bwperim(BWfinal);
Segout = I;
Segout(BWoutline) = 255;
imshow(Segout)
title('Outlined Original Image')
```


- 외각 검출 및 기본 모폴로지 (팽창, 침식) 연산을 통해, 입력된 이미지 내 완전한 세포 검출을 달성할 수 있음
- 이때, 불완전 세포 객체가 테두리에 위치한 것이 아닌, 완전한 객체와 인접했을 때의 제거에 대한 추가적인 학습이 필요함

3-1 Next Session 다음 발표 내용

- "Types of Morphological Operations" on page 10-2
- "Structuring Elements" on page 10-9
- "Border Padding for Morphology" on page 10-13
- "Morphological Reconstruction" on page 10-14
- "Find Image Peaks and Valleys" on page 10-21
- "Pixel Connectivity" on page 10-27
- "Lookup Table Operations" on page 10-30
- "Dilate an Image to Enlarge a Shape" on page 10-32
- "Remove Thin Lines Using Erosion" on page 10-36
- "Use Morphological Opening to Extract Large Image Features" on page 10-38
- "Flood-Fill Operations" on page 10-42
- "Detect Cell Using Edge Detection and Morphology" on page 10-45
- "Granulometry of Snowflakes" on page 10-50
- "Distance Transform of a Binary Image" on page 10-55
- "Label and Measure Connected Components in a Binary Image" on page 10-57

5차 발표 범위

PRESENTATION END

THANK YOU

Chapter 10. Morphological Operations (ঞাল্বপ্রথ) v5

오영우

조선대학교컴퓨터공학과석사과정

CONTENTS

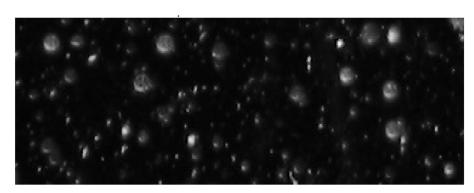
Granulometry of Snowflakes 눈송이의 입도 측정

Performance analysis 성능 분석

O3 Conclusion 결론

T - Granulometry of Snowflakes 눈송이의 입도 측정

- ①1 '입도'는 특정 입자의 크기 분포의 정도를 의미. 따라서, 큰 입자가 많이 존재하는 경우, '입도' 가 높다고 말할 수 있음
- ② 주요 목표는 모든 눈송이 객체를 전부 탐지하여 분포를 계산하는 것이 아닌, 단일 이미지를 통해 모든 입자 크기의 분포를 측정하는 것 * 모든 눈송이 객체를 판별하고, 이에 대한 크기 분포를 책정하는 것은 많은 계산량이 요구됨





〈 눈송이 입도 측정에 의해 처리된 이미지 결과 〉

- 이미지 내 존재하는 모든 눈송이 객체를 탐지하여, 하나하나 입자 크기의 분포를 책정하는 것은 많은 복잡도를 요구함
- 해당 예제는 계산량을 줄임과 동시에 단일 이미지만으로 모든 입자 크기의 분포를 측정하는 것을 목표로 함

1-2 Granulometry of Snowflakes 눈송이 이미지 호출

- on imread(), imshow(), 함수를 통해 입력 이미지를 호출 및 표시
- 02 호출된 이미지의 눈송이 객체는 명확하지 않음으로, 이미지의 대비 향상 및 강도를 조정해야 함

```
I = imread("snowflakes.png");
imshow(I)
title('Input date: snowflakes')

(입력 이미지 호출 및 표시 〉

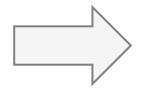
(호출된 눈송이 이미지 〉
```

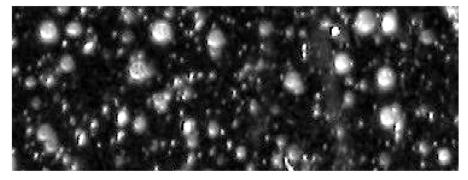

- 호출된 이미지들의 경우, 눈송이 객체가 화질에 의해 명확하지 않음
- 이를 처리하기 앞서, 입력된 이미지의 대비 및 강도를 조정하여 입력된 눈송이 이미지를 처리해야 함

1-3 Granulometry of Snowflakes 이미지 대비 최대화

- 01 Adapthisteq() 함수를 이용하여 입력된 이미지의 히스토그램을 균등화 처리
- 02 균등화된 이미지에 imadjust() 함수를 이용하여 이미지의 대비 및 강도를 재조정
 - * Adapthisteq() 함수는 '대비 제한 적응 히스토그램 균등화' 함수를 의미

```
claheI = adapthisteq(I,"NumTiles",[10 10]);
claheI = imadjust(claheI);
imshow(claheI)
title('Enhanced contrast')
```





〈 이미지 대비 및 강도 조정을 위한 코드 〉

〈 대비 조정된 눈송이 이미지〉

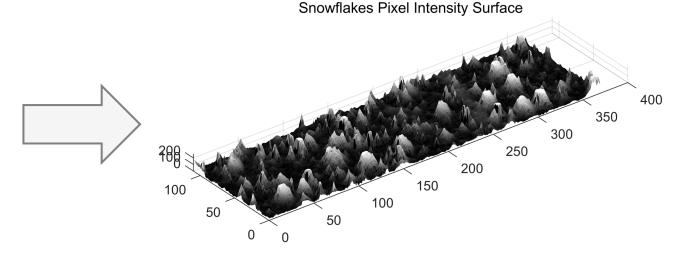
- 입력된 눈송이 이미지의 대비 및 강도를 최대화하기 위한 작업이 요구 됨
- 최초 입력된 눈송이 이미지 대비 높은 강도로 처리된 것을 확인할 수 있음

1 -4 Granulometry of Snowflakes 이미지 강도를 활용한 부피 결정 (1)

- ① 모폴로지 연산에 의해 얻어지는 각 이미지 픽셀 값의 합을 통해, 이미지 표면의 강도가 계산 됨
- ② 눈송이 이미지의 표면을 강도로 표현하여, 각각의 눈송이 입자에 대한 표면적을 개념화할 수 있음

figure surf(claheI, EdgeColor="none") colormap("gray") title("Snowflakes Pixel Intensity Surface") daspect([1 1 15]);

〈 이미지 강도를 활용한 Pixel 표면 부피 출력 코드 〉



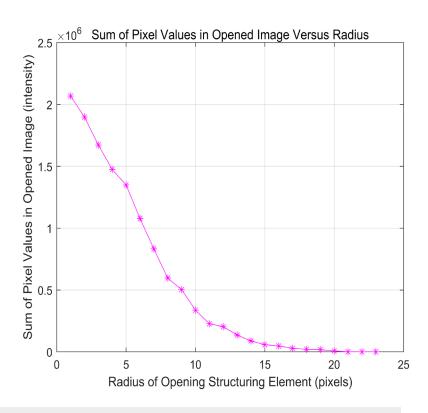
- 전처리된 눈송이 이미지에 대해 모폴로지 연산을 취하여, 각 이미지 내 존재하는 눈송이의 표면 강도를 계산
- 누송이 이미지를 표면 강도로 표현하게 되면, 각각의 눈송이 입자에 대한 표면적을 개념화할 수 있음

F

1-5 Granulometry of Snowflakes 이미지 강도를 활용한 부피 결정 (2)

- ① 구조화 요소 커널의 크기가 늘어날 때의 표면 부피가 0이 되도록 카운트의 제약을 조건화
- 02 구조화 요소에 의해 제거만큼 표면 부피가 축소되는 것을 활용하여 눈송이 객체들에 대한 부피를 결정

```
radius_range = 0:22;
intensity_volume = zeros(size(radius_range));
for counter = radius_range
    remain = imopen(claheI, strel("disk", counter));
    intensity_volume(counter + 1) = sum(remain(:));
end
figure
plot(intensity_volume, "m - *")
grid on
title("Sum of Pixel Values in Opened Image Versus Radius")
xlabel("Radius of Opening Structuring Element (pixels)")
ylabel("Sum of Pixel Values in Opened Image (intensity)")
```



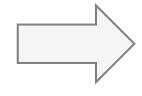
- 구조화 요소 커널이 점진적으로 증가하며, 눈송이 이미지의 표면을 계산하게 됨
- 이때, 구조화 요소 커널에 의해 제거된 만큼의 부피를 계산할 수 있게 됨으로 큰 구조화 요소 커널에 제거된 영역일 수록 표면 부피가 감소하게 됨

Detection cell in MATLAB

-6 특정 입도 이상을 지닌 눈송이 강조

- 01 MATLAB에서 제공하는 도함수 기능의 Diff()를 이용하여, 눈송이 입도의 최소 및 최대 반지름을 획득
- 02 획득된 최소 반지름 (입도) 이상의 눈송이 객체를 강조 표시

```
open5 = imopen(claheI,strel("disk",5));
open6 = imopen(claheI,strel("disk",6));
rad5 = open5 - open6;
imshow(rad5,[])
title('Emphasize snowflakes having a particular radius')
```



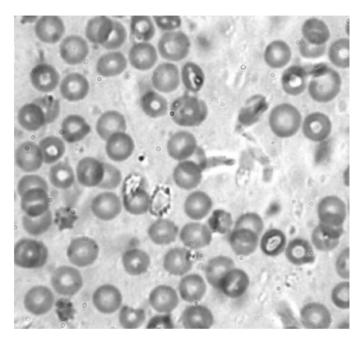
〈 최소 반지름(입도)를 이용한 눈송이 객체 강조 코드 〉

〈 특정 입도 이상을 지닌 눈송이 이미지 처리 결과 〉

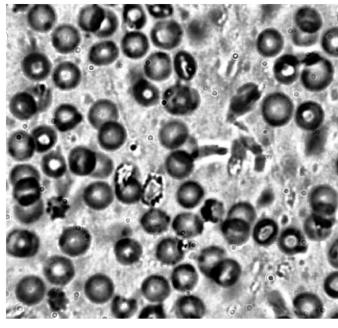
- 도함수를 활용하여, 눈송이의 입도를 계산하고 이에 따른 최소 입도 및 최대 입도를 지닌 눈송이 객체를 탐지
- 최소 입도 이상의 입도를 지는 눈송이를 강조하는 작업을 수행

2-1Performance analysis세포 이미지에 대한 입도 분석 (1)

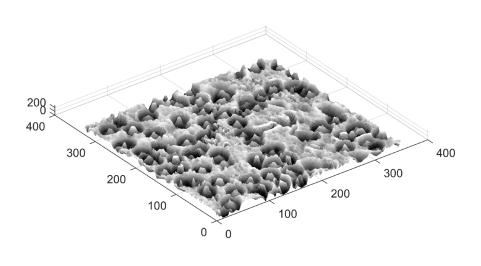
- ①1 구글에 검색되는 세포(cell) 이미지에 대한 입도 측정 및 분석을 시행
- 02 RGB 값을 포함한 3차원 이미지를 1차원으로 변환하여 입력 이미지 데이터를 생성



〈 입도 분석을 위한 세포 이미지 〉



〈 대비 및 강도가 재적용된 세포 이미지 〉

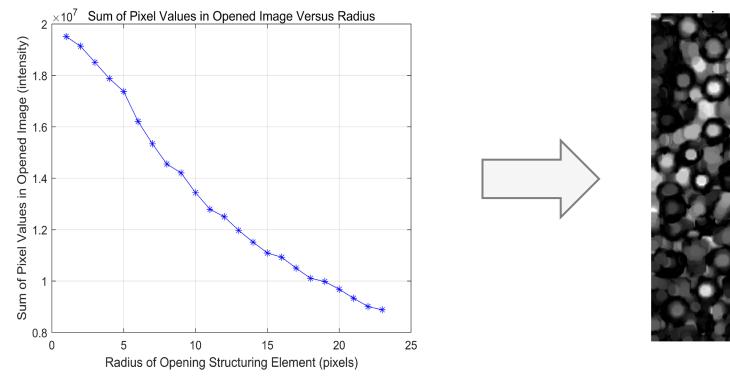


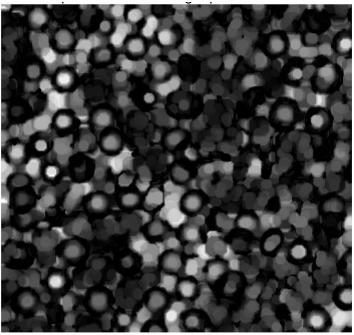
〈 이미지 강도를 활용한 Pixel 표면 부피 출력 〉

- 실험결과를 통해, 눈송이 및 세포 이미지 모두에 적용이 가능한 것을 확인할 수 있음
- 이때, 세포 이미지의 경우 RGB 값을 포함함으로 1차원으로 처리하기 위한 rgb2gray() 함수를 활용

2-2Performance analysis세포 이미지에 대한 입도 분석 (2)

01 눈송이의 입도 측정 예제는 세포 이미지에 동일하게 적용될 수 있음을 확인





- 눈송이 예제에서 활용한 입도 측정기법은 세포 및 타 현미경으로 관찰된 소형 이미지 모두에 적용 가능
- 이때, 도함수를 활용한 최대 및 최소 입도에 따라 강조되는 결과가 다소 상이하게 출력되는 경향을 보임

PRESENTATION END

THANK YOU